• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Gu, Zhengzhi (Gu, Zhengzhi.) | Wang, Suyu (Wang, Suyu.) | Zhu, Fengqing (Zhu, Fengqing.)

收录:

CPCI-S

摘要:

The existence of mixed pixels pose difficulty for many hyperspectral image applications. In this paper, we propose an endmember dictionary based algorithm for hyperspectral image unmixing. A material class based endmember dictionary pre-trained on a standard spectral library is used as the set of endmembers for unmixing. A K-SVD based sparse decomposition algorithm is adopted to capture the abundances of the endmembers. By training the endmembers from standard spectral library, typicality of the endmembers are improved and correlations between the endmembers are reduced. Experimental results show that the proposed algorithm improves performances for both simulated and real data, especially in low SNR cases.

关键词:

Abundances Estimation Hyperspectral Images Redundant Dictionary Spectral Unmixing

作者机构:

  • [ 1 ] [Gu, Zhengzhi]Beijing Adv Innovat Ctr Future Internet Technol, Beijing, Peoples R China
  • [ 2 ] [Wang, Suyu]Beijing Adv Innovat Ctr Future Internet Technol, Beijing, Peoples R China
  • [ 3 ] [Gu, Zhengzhi]Beijing Engn Res Ctr IoT Software & Syst, Beijing, Peoples R China
  • [ 4 ] [Wang, Suyu]Beijing Engn Res Ctr IoT Software & Syst, Beijing, Peoples R China
  • [ 5 ] [Zhu, Fengqing]Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
  • [ 6 ] [Gu, Zhengzhi]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 7 ] [Wang, Suyu]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • [Gu, Zhengzhi]Beijing Adv Innovat Ctr Future Internet Technol, Beijing, Peoples R China;;[Gu, Zhengzhi]Beijing Engn Res Ctr IoT Software & Syst, Beijing, Peoples R China;;[Gu, Zhengzhi]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018)

ISSN: 2376-4066

年份: 2018

页码: 993-997

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:330/4957232
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司