• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Sun, Bin (Sun, Bin.) | Kong, Dehui (Kong, Dehui.) (学者:孔德慧) | Wang, Shaofan (Wang, Shaofan.) | Li, Jinghua (Li, Jinghua.)

收录:

CPCI-S

摘要:

Keyframe extraction is important for video retrieval. In order to realize frequency adaptive human motion sequence resampling and achieve high quality keyframe, we propose a new keyframe extraction method for human motion sequence. First, we define the inter-frame similarity metric based on the features of human body parts. Then, the keyframe extraction is realized by the affine propagation clustering algorithm. The proposed method starts from the information distribution of the video itself, adaptively searches for the optimal keyframe of the video, and the operation speed is fast. Finally, the evaluation of the sequence reconstruction based on keyframe is verified. A comparative experiment conducted on the CMU database verified the efficiency of our method.

关键词:

human motion capture data Keyframe extraction affinity propagation

作者机构:

  • [ 1 ] [Sun, Bin]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 2 ] [Kong, Dehui]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Shaofan]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Jinghua]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China

通讯作者信息:

  • [Sun, Bin]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2018 IEEE 9TH ANNUAL INFORMATION TECHNOLOGY, ELECTRONICS AND MOBILE COMMUNICATION CONFERENCE (IEMCON)

年份: 2018

页码: 107-112

语种: 英文

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:282/3775080
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司