• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Cao, Yang (Cao, Yang.) | Si, Yunfei (Si, Yunfei.) | Cai, Zhi (Cai, Zhi.) | Ding, Zhiming (Ding, Zhiming.) (学者:丁治明)

收录:

CPCI-S

摘要:

Group identification refers to discovering groups with similar behaviors or preferences. The daily trajectories record the activities of moving objects, which reflect their behaviors. These mobile data provide us with a new data analysis approach for groups identification. Therefore, we can identify users or groups based on similar trajectory patterns by mining implicit behaviors patterns. In this paper, we propose a novel trajectory semantics calculation method to identify groups that have similar behaviors. In our model, we first propose a fast and efficient two-phase discovering stay regions method (TPD) from daily trajectories, then generate semantic trajectories by enriching the stay regions with semantic labels based on POI information and LDA topic model. To measure the similarity between semantic trajectories, we design a semantic similarity measure model based on geographic and semantic similarity factor. We have conducted extensive experiments on real trajectory dataset of Geolife project, and the experimental results show our proposed method is both effective and efficient.

关键词:

semantic trajectory groups identification trajectory similarity measure spatio-temporal trajectory

作者机构:

  • [ 1 ] [Cao, Yang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Si, Yunfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Cai, Zhi]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Ding, Zhiming]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Cao, Yang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2018 IEEE 9TH ANNUAL INFORMATION TECHNOLOGY, ELECTRONICS AND MOBILE COMMUNICATION CONFERENCE (IEMCON)

年份: 2018

页码: 308-313

语种: 英文

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:113/3918626
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司