Indexed by:
Abstract:
Cataract is defined as a lenticular opacity presenting usually with poor visual acuity. It is considered the most common cause of blindness. Early diagnosis and treatment can reduce the suffering of patients and prevent visual impairment from turning into blindness. Recently, cataract diagnosis applying pattern recognition is in a rising period. For retinal fundus images, the task is usually cataract classification. However, it needs complex manual processing, which demands dexterous people and time taking exertion. Besides, it faces the challenge of effective interpretability and dependability. In this paper, we develop a deep-learning algorithm to intuitively identify cataract attributes to solve these limitations. Our model, is a 18(50)-layer convolutional neural network that inputs retinal fundus images in G channel and outputs the prediction with heatmap. The heatmap localizes the areas where most indicative of different levels of cataract is. Furthermore, we extend the training strategy for the corresponding task, which aims at improving the performance of the network. Comparing with other methods in cataract classification, we succeeded to achieve state of the art accuracy of proposed method on detection and grading task. Most importantly, our model provides a compelling reason via localizing the areas revealing cataract in the image.
Keyword:
Reprint Author's Address:
Email:
Source :
2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC)
ISSN: 1062-922X
Year: 2018
Page: 3964-3969
Language: English
Cited Count:
WoS CC Cited Count: 34
SCOPUS Cited Count: 42
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1