• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yuan, Haitao (Yuan, Haitao.) | Bi, Jing (Bi, Jing.) | Zhou, MengChu (Zhou, MengChu.)

收录:

CPCI-S EI Scopus

摘要:

The infrastructure resources in distributed green data centers (DGDCs) are shared by multiple heterogeneous applications to provide flexible services to global users in a high-performance and low-cost way. It is highly challenging to minimize the total cost of a DGDC provider in a market where bandwidth price of Internet service providers (ISPs), electricity price and the availability of renewable green energy all vary with geographic locations. Unlike existing studies, a Geographical Scheduling method of Multi-Application Tasks (GSMAT) that exploits spatial diversity in DGDCs is proposed to minimize the total cost of their provider by cost-effectively scheduling all arriving tasks of heterogeneous applications to meet tasks' delay bound constraints. In each time slot, the cost minimization problem for DGDCs is formulated as a constrained optimization one and solved by the proposed Simulated-annealing-based Bat Algorithm (SBA). Trace-driven experiments demonstrate that GSMAT achieves lower cost and higher throughput than two typical scheduling methods.

关键词:

bat algorithm cost minimization distributed computing Green data centers hybrid meta-heuristic optimization simulated annealing task scheduling

作者机构:

  • [ 1 ] [Yuan, Haitao]New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
  • [ 2 ] [Zhou, MengChu]New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
  • [ 3 ] [Bi, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • [Yuan, Haitao]New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC)

ISSN: 1062-922X

年份: 2018

页码: 3171-3176

语种: 英文

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:84/3607871
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司