• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Bo (Liu, Bo.) (学者:刘博) | Li, Xingrui (Li, Xingrui.) | Li, Jianqiang (Li, Jianqiang.) (学者:李建强) | Li, Yong (Li, Yong.) | Lang, Jianlei (Lang, Jianlei.) (学者:郎建垒) | Gu, Rentao (Gu, Rentao.) | Wang, Fei (Wang, Fei.)

收录:

CPCI-S EI Scopus

摘要:

The diagnosis of breast cancer in the middle and early period is conducive to later treatment, but the current diagnosis rate is not very desirable. Using machine learning to predict the benign and malignant of breast cancer can provide some assist to doctors' treatment in clinical practice. In this paper, we have collected data from digitized images of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei presented in the image. This work adopts several feature selection methods to select the most related features for breast cancer diagnosis. Based on the selected features, four machine learning models, Support Vector Machine (SVM), Decision Tree (DT), AdaBoost and Random Forest (RF) are built and their performance are evaluated. The experimental results show that the accuracy of RF is higher than the other three methods.

关键词:

breast cancer Classification feature selection prediction model

作者机构:

  • [ 1 ] [Liu, Bo]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Bo]Beijing Univ Technol, Sch Software Engn, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Xingrui]Beijing Univ Technol, Sch Software Engn, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Jianqiang]Beijing Univ Technol, Sch Software Engn, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Yong]Beijing Univ Technol, Sch Software Engn, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Lang, Jianlei]Beijing Univ Technol, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 7 ] [Lang, Jianlei]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 8 ] [Gu, Rentao]Beijing Univ Posts & Telecommun, Beijing Lab Adv Informat Networks, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
  • [ 9 ] [Wang, Fei]Cornell Univ, Div Hlth Informat, Dept Healthcare Policy & Res, Weill Cornell Med Sch, Ithaca, NY 14853 USA

通讯作者信息:

  • 刘博

    [Liu, Bo]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China;;[Liu, Bo]Beijing Univ Technol, Sch Software Engn, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC)

ISSN: 1062-922X

年份: 2018

页码: 4385-4390

语种: 英文

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次: 10

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:662/3616452
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司