• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ren, Zhongming (Ren, Zhongming.) | Li, Wenjing (Li, Wenjing.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

CPCI-S

摘要:

Recently, Gravitational search algorithm (GSA) was considered as one method for optimizing functions and solving real problems. For the sake of better adjust the values of recurrent RBF neural network (RRBFNN) to make the network achieve better performance, the MGSA is essential in this article. The advised work achieves a better compromise between exploration and development. At the same time, by increasing the guidance of the global optimal particle, the problem that the gravitational search algorithm converges slowly in the later iteration is solved. The Experiment found that the network has better convergence speed and better test accuracy than the RRBFN optimized by the conventional optimization algorithm.

关键词:

optimization fast convergence speed gravitational search algorithm recurrent RBF neural network

作者机构:

  • [ 1 ] [Ren, Zhongming]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Wenjing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Ren, Zhongming]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Wenjing]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Qiao, Junfei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • [Ren, Zhongming]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Ren, Zhongming]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2018 CHINESE AUTOMATION CONGRESS (CAC)

ISSN: 2688-092X

年份: 2018

页码: 4079-4083

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:212/3909189
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司