• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Hao (Chen, Hao.) | Guo, Hang (Guo, Hang.) (学者:郭航) | Ye, Fang (Ye, Fang.) | Ma, Chong Fang (Ma, Chong Fang.)

收录:

CPCI-S

摘要:

Blocked flow channel can enhance the reactants transfer process and improve the output performance of proton exchange membrane fuel cells. In waved-like blocked flow channels, the flow resistance at the windward side can be reduced because of the streamline shape design. However, the vortexes, which account for the power loss, can be formed at the leeward sides. In this work, a two-dimensional, two-phase, non-isotherinal and steady state model is developed, and flow channels with different wave-like blocks are designed to investigate the effects of windward sides and leeward side on output performance of proton exchange membrane fuel cells. Simulation results show that: when the heights and weights of wave-like blocks are both fixed, longer leeward side of blocks facilitate to reduce the vortexes forming and decrease the pumping powers, in the meantime, the net powers and the efficiency are improved. However, when the leeward sides of blocks are shortened and windward sides are lengthened, vortexes forming in flow channels are strengthened and pumping powers are improved, and the net powers are reduced. Moreover, when the leeward side is prolonged, the liquid water in flow channels can be removed more easily.

关键词:

pumping power flow channel design Proton exchange membrane fuel cell two-phase flow flow characteristics

作者机构:

  • [ 1 ] Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 2 ] Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China

通讯作者信息:

  • 郭航

    [Guo, Hang]100 Pingleyuan, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

2018 7TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA)

ISSN: 2377-6897

年份: 2018

页码: 831-835

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 7

在线人数/总访问数:1120/3892606
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司