• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Huang, Qizheng (Huang, Qizheng.) | Bao, Changchun (Bao, Changchun.) (学者:鲍长春) | Wang, Xianyun (Wang, Xianyun.) | Xiang, Yang (Xiang, Yang.)

收录:

CPCI-S

摘要:

This paper provides a novel deep neural networks (DNN) based speech enhancement method using multi-band excitation (MBE) model. Generally, the proposed system contains two stages, namely training stage and enhancing stage. In the training stage, two DNNs with different targets are trained. The training targets are harmonic magnitude and band difference function of clean speech, respectively. The input feature for two DNNs is log-power spectra (LPS) of noisy speech. In the enhancing stage, using the output of DNNs and online estimated pitch period, the enhanced speech can be obtained by MBE speech synthesis. Using the proposed method, the parameters of MBE model can be accurately estimated to synthesize the enhanced speech with the high quality. At the same time, the noise between the harmonics is effectively eliminated. The experiments show that the proposed method outperforms the reference methods for speech quality and intelligibility.

关键词:

DNN Speech enhancement analysis-with-synthesis acoustic features MBE model

作者机构:

  • [ 1 ] [Huang, Qizheng]Beijing Univ Technol, Speech & Audio Signal Proc Lab, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Bao, Changchun]Beijing Univ Technol, Speech & Audio Signal Proc Lab, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Xianyun]Beijing Univ Technol, Speech & Audio Signal Proc Lab, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Xiang, Yang]Beijing Univ Technol, Speech & Audio Signal Proc Lab, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Huang, Qizheng]Beijing Univ Technol, Speech & Audio Signal Proc Lab, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2018 16TH INTERNATIONAL WORKSHOP ON ACOUSTIC SIGNAL ENHANCEMENT (IWAENC)

ISSN: 2639-4316

年份: 2018

页码: 196-200

语种: 英文

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:203/4298522
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司