• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xiang, Yang (Xiang, Yang.) | Bao, Changchun (Bao, Changchun.) (学者:鲍长春)

收录:

CPCI-S

摘要:

Recently, deep learning techniques have significantly promoted the development of speech enhancement. In this paper, we propose a novel framework to conduct speech enhancement, which is based on the long short-term memory networks (LSTMs) and conditional generative adversarial networks (cGANs). This framework includes a generator (G) and a discriminator (D). G and D are both LSTMs so our method is able to be more suitable for speech enhancement task than previous deep neural network-based methods. In this study, we firstly apply this framework to map the log-power spectral (LPS) of clean speech given the noisy LPS input. In addition, this framework is also used to estimate the ideal Wiener filter by giving the noisy Cepstral input. Experimental results indicate that our strategy can not only improve the quality and intelligibility of noisy speech, but also is competitive to other deep learning-based approaches.

关键词:

deep learning generative adversarial networks long short-term memory networks speech enhancement

作者机构:

  • [ 1 ] [Xiang, Yang]Beijing Univ Technol, Speech & Audio Signal Proc Lab, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Bao, Changchun]Beijing Univ Technol, Speech & Audio Signal Proc Lab, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Xiang, Yang]Beijing Univ Technol, Speech & Audio Signal Proc Lab, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2018 16TH INTERNATIONAL WORKSHOP ON ACOUSTIC SIGNAL ENHANCEMENT (IWAENC)

ISSN: 2639-4316

年份: 2018

页码: 46-50

语种: 英文

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:191/3611382
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司