• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Chao (Liu, Chao.) (学者:刘超) | Zhao, Qi (Zhao, Qi.) | Yan, Bai (Yan, Bai.) | Elsayed, Saber (Elsayed, Saber.) | Sarker, Ruhul (Sarker, Ruhul.)

收录:

CPCI-S EI Scopus

摘要:

High-dimensional data clustering is of great importance in the big data era. Multi-objective evolutionary soft subspace clustering (SSC) algorithms have shown promise in handling such datasets, but the objective functions and local search strategies used have not yet been well investigated. To consider these issues, this paper proposes an improved multi-objective evolutionary approach with new objective function and local search operator for clustering high-dimensional data. First, a new objective function is provided, which optimizes the clustering validity indexes and additional item simultaneously to overcome the difficulty of coefficient settings in the objective functions of existing SSC approaches. Second, an improved local search operator is introduced, which updates the weights of features by considering both the within-class compactness and between-class separation to capture a more comprehensive data structure. An experimental study with comparison with state-of-the-art SSC methods demonstrates the efficiency of the proposed approach.

关键词:

high-dimensional data soft subspace clustering MOEA/D Multi-objective evolutionary clustering

作者机构:

  • [ 1 ] [Liu, Chao]Beijing Univ Technol, Coll Econ & Management, Beijing, Peoples R China
  • [ 2 ] [Zhao, Qi]Beijing Univ Technol, Coll Econ & Management, Beijing, Peoples R China
  • [ 3 ] [Yan, Bai]Beijing Univ Technol, Inst Laser Engn, Beijing, Peoples R China
  • [ 4 ] [Elsayed, Saber]Univ New South Wales Canberra, Sch Engn & Informat Technol, Canberra, ACT, Australia
  • [ 5 ] [Sarker, Ruhul]Univ New South Wales Canberra, Sch Engn & Informat Technol, Canberra, ACT, Australia

通讯作者信息:

  • 刘超

    [Liu, Chao]Beijing Univ Technol, Coll Econ & Management, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

ACM 5TH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING APPLICATIONS AND TECHNOLOGIES (BDCAT)

年份: 2018

页码: 184-190

语种: 英文

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:150/4297919
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司