• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xu, Dezhong (Xu, Dezhong.) | Wu, Lifang (Wu, Lifang.) (学者:毋立芳) | Jian, Meng (Jian, Meng.) | Wang, Qi (Wang, Qi.)

收录:

CPCI-S

摘要:

In this paper, we propose a novel visual tracking algorithm by combining the structure-aware network (SA-Net) and spatial-temporal regression model. We first use SA-Net to obtain the initial location proposal, and the deep features are extracted using a fine-tuned convolutional neural network model. Finally, both the location proposal and deep features, including historical information, are input into the long short-term memory (LSTM) for end-to-end spatial temporal regression to adjust the initial location proposal from SA-Net. The experimental results on the challenging OTB dataset demonstrate that the proposed scheme is robust to missing tracking caused by occlusion or object deformation. Additionally, the compared experiments show that the proposed scheme is more competitive than state-of-the-art algorithms.

关键词:

occlusion LSTM SA-Net spatial and temporal regression object deformation

作者机构:

  • [ 1 ] [Xu, Dezhong]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Jian, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Qi]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Xu, Dezhong]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR)

ISSN: 1051-4651

年份: 2018

页码: 1912-1917

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:289/4974700
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司