• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Bi, Jing (Bi, Jing.) | Yuan, Haitao (Yuan, Haitao.) | Zhang, Jia (Zhang, Jia.) | Zhou, MengChu (Zhou, MengChu.)

收录:

CPCI-S EI Scopus

摘要:

A growing number of global companies select Green Cloud Data Centers (GCDCs) to manage their delay-constrained applications. The fast growth of users' tasks dramatically increases the energy consumed by GCDC, e.g., Google. The random nature of tasks brings a big challenge of scheduling tasks of each application with limited infrastructure resources of GCDCs. This work accurately computes a mathematical relation between task service rates and the number of tasks refusal in GCDC. Besides, it proposes a Temporal Task Scheduling (TTS) algorithm investigating the temporal variation in geo-distributed cloud data centers to schedule all tasks within their delay constraints. Furthermore, a novel dynamic hybrid meta-heuristic algorithm is developed for the formulated profit maximization problem, based on genetic simulated annealing and particle swarm optimization. The proposed algorithm can guarantee that differentiated service qualities can be provided with higher overall performance and lower energy cost. Trace-driven simulations demonstrate that larger throughput and profit is achieved than several existing scheduling algorithms.

关键词:

delay-constrained application Green cloud data center hybrid metaheuristic optimization profit maximization temporal task scheduling

作者机构:

  • [ 1 ] [Bi, Jing]Beijing Univ Technol, Sch Software Engn, Beijing, Peoples R China
  • [ 2 ] [Yuan, Haitao]Beijing Jiaotong Univ, Sch Software Engn, Beijing, Peoples R China
  • [ 3 ] [Zhang, Jia]Carnegie Mellon Univ, Dept Elect & Comp Engn, Moffett Field, CA USA
  • [ 4 ] [Zhou, MengChu]New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA

通讯作者信息:

  • [Bi, Jing]Beijing Univ Technol, Sch Software Engn, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS 2018 IEEE 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (CLOUD)

年份: 2018

页码: 138-145

语种: 英文

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:220/3605101
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司