• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Pu, Wang (Pu, Wang.) (学者:王普) | Sheng, Ding (Sheng, Ding.) | Gao, Xuejin (Gao, Xuejin.) (学者:高学金) | Gao, Huihui (Gao, Huihui.)

收录:

CPCI-S

摘要:

In order to reduce the energy consumption of train operation, an optimization method based on genetic algorithm of golden section is proposed. Firstly, the Multi-particle train model is established. Secondly, the optimal operation strategy of subway trains is analyzed according to different ramps. Then, a golden section genetic algorithm (GR-GA) is proposed to solve the problem that genetic algorithm is easy to fall into local optimum. A golden section genetic algorithm (GR-GA) is proposed to search for the optimal transfer position of train and the best adaptive point of searching crossover and mutation operator with golden ratio is introduced, which improves the local optimization ability and convergence performance. Taking Yizhuang line as a simulation case, the results show that the proposed algorithm has a better optimization effect.

关键词:

Golden ratio Genetic algorithm Subway train Energy-saving optimization Local optimum

作者机构:

  • [ 1 ] [Pu, Wang]Beijing Univ Technol, Beijing Lab Urban Rail Transit, Engn Res Ctr Digital Community, Fac Informat Technol,Minist Educ, Beijing, Peoples R China
  • [ 2 ] [Sheng, Ding]Beijing Univ Technol, Beijing Lab Urban Rail Transit, Engn Res Ctr Digital Community, Fac Informat Technol,Minist Educ, Beijing, Peoples R China
  • [ 3 ] [Gao, Xuejin]Beijing Univ Technol, Beijing Lab Urban Rail Transit, Engn Res Ctr Digital Community, Fac Informat Technol,Minist Educ, Beijing, Peoples R China
  • [ 4 ] [Gao, Huihui]Beijing Univ Technol, Beijing Lab Urban Rail Transit, Engn Res Ctr Digital Community, Fac Informat Technol,Minist Educ, Beijing, Peoples R China

通讯作者信息:

  • 王普

    [Pu, Wang]Beijing Univ Technol, Beijing Lab Urban Rail Transit, Engn Res Ctr Digital Community, Fac Informat Technol,Minist Educ, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS 2018 33RD YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC)

年份: 2018

页码: 869-874

语种: 英文

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:317/4510680
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司