• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xu, Shaowu (Xu, Shaowu.) | Miao, Jun (Miao, Jun.) | Qing, Laiyun (Qing, Laiyun.) | Qiao, Yuanhua (Qiao, Yuanhua.) (学者:乔元华) | Zou, Baixian (Zou, Baixian.)

收录:

CPCI-S EI Scopus

摘要:

As one of the research hotspots in recent years, especially in pattern recognition, Convolutional Neural Network (CNN) is widely known for its high efficiency. However some researches show that there is a problem in the CNN which cannot learn the high-level features. In order to solve this problem, this paper proposes a new kind of image representation, which we call it "shape encoding maps". Our experimental results show that, in most cases, the recognition accuracies obtained by inputting the shape encoded maps to a CNN are higher than that of using the original image data for a CNN to learn directly without shape encoding.

关键词:

Classification CNN Image Classification Shape Encoding Shape Representation

作者机构:

  • [ 1 ] [Xu, Shaowu]Beijing Informat Sci & Technol Univ, Sch Comp Sci, Beijing Key Lab Internet Culture & Digital Dissem, Beijing 100101, Peoples R China
  • [ 2 ] [Miao, Jun]Beijing Informat Sci & Technol Univ, Sch Comp Sci, Beijing Key Lab Internet Culture & Digital Dissem, Beijing 100101, Peoples R China
  • [ 3 ] [Qing, Laiyun]Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China
  • [ 4 ] [Qiao, Yuanhua]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 5 ] [Zou, Baixian]Beijing Union Univ, Coll Appl Arts & Sci, Beijing 100191, Peoples R China

通讯作者信息:

  • [Miao, Jun]Beijing Informat Sci & Technol Univ, Sch Comp Sci, Beijing Key Lab Internet Culture & Digital Dissem, Beijing 100101, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2018 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE

ISSN: 0277-786X

年份: 2018

卷: 10836

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:334/3650279
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司