• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ren, Keyan (Ren, Keyan.) | Zhang, Xiao (Zhang, Xiao.) | Han, Yu (Han, Yu.) | Hou, Yibin (Hou, Yibin.) (学者:侯义斌)

收录:

CPCI-S EI Scopus

摘要:

Night target tracking usually fails due to various reasons such as insufficient light, appearance change, motion blur, illumination variation, and deformation. Because infrared (IR) and visible video data provides complementary information that can be utilized suitably and efficiently, we explore a novel framework by combining correlation filter-based visible tracking and Markov chain Monte Carlo (MCMC)-based IR tracking to overcome these challenges. In this framework, the two types of videos are asynchronous, and the frame rate of visible video is several times faster than that of IR video. Visible video is first used for location and scale estimation by solving a ridge regression problem efficiently in the correlation filter domain. When recording IR data, we use a uniquely designed feature shape context descriptor for the best location and scale estimation of an IR video target by using the MCMC particle filter. Then, we use candidate region location-scale fusion rules for the final target tracking update. Meanwhile, we build an accurately labeled IR and visible target tracking dataset for experiments. The result shows that the performance of our proposed approach is better than the state-of-the-art trackers for night target tracking, and our approach can significantly improve re-tracking performance when there is the drift.

关键词:

correlation filter target tracking infrared and visible tracking asynchronous multi-sensor fusion

作者机构:

  • [ 1 ] [Ren, Keyan]Beijing Univ Technol, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 2 ] [Han, Yu]Beijing Univ Technol, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 3 ] [Hou, Yibin]Beijing Univ Technol, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 4 ] [Ren, Keyan]Univ Penn, 3330 Walnut St, Philadelphia, PA 19104 USA
  • [ 5 ] [Zhang, Xiao]Univ Penn, 3330 Walnut St, Philadelphia, PA 19104 USA

通讯作者信息:

  • [Ren, Keyan]Beijing Univ Technol, 100 Pingleyuan, Beijing 100124, Peoples R China;;[Ren, Keyan]Univ Penn, 3330 Walnut St, Philadelphia, PA 19104 USA

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

APPLICATIONS OF DIGITAL IMAGE PROCESSING XLI

ISSN: 0277-786X

年份: 2018

卷: 10752

语种: 英文

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:225/4521671
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司