• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Xiujuan (Wang, Xiujuan.) | Tao, Yuanrui (Tao, Yuanrui.) | Zheng, Kangfeng (Zheng, Kangfeng.)

收录:

CPCI-S EI

摘要:

Feature selection (FS) plays an important role in machine learning. FS under minimum redundancy maximum relevance framework based on mutual information behaved well according to existing researched. This paper focus on the validity of the MM-Redundancy Max -Relevance (mRMR) framework with some traditional correlative criteria, such as Spearman coefficient, distance correlation (dCor), and maximal information coefficient (MIC), etc. Experimental results show that mRMR can bring encouraging feature selection result compared with the traditional K-BEST feature selection method, no matter which criterion is adopted and the classification accuracy of these criteria is improved under the mRMR framework.

关键词:

Feature Selection Machine Learning mRMR

作者机构:

  • [ 1 ] [Wang, Xiujuan]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing, Peoples R China
  • [ 2 ] [Tao, Yuanrui]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing, Peoples R China
  • [ 3 ] [Zheng, Kangfeng]Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, 10 Xitucheng Rd, Beijing, Peoples R China

通讯作者信息:

  • [Wang, Xiujuan]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2018 EIGHTH INTERNATIONAL CONFERENCE ON INSTRUMENTATION AND MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC 2018)

ISSN: 2373-6844

年份: 2018

页码: 1490-1495

语种: 英文

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:2512/4260130
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司