• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tao, Yang (Tao, Yang.) | Cui, Zhu (Cui, Zhu.) | Zhu Wenjun (Zhu Wenjun.)

收录:

CPCI-S EI Scopus

摘要:

In massive text information, text classification can better help people organize and manage the mass of text information. In real life, a text often belongs to a number of categories. For this classification scenario, it is called a multi-label classification. Existing text multi-label classification methods rarely take into account the correlation between labels, and lack the understanding of the label semantics. In this paper we propose a method of text multi-label learning based on label correlation, modeling between texts and label vector through neural networks, and capture the semantic correlation between text and labels. A large number of experiments show the effectiveness of the method, especially when the amount of data is large.

关键词:

natural language processing text classification multi-label learning data mining

作者机构:

  • [ 1 ] [Tao, Yang]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing, Peoples R China
  • [ 2 ] [Cui, Zhu]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing, Peoples R China
  • [ 3 ] [Zhu Wenjun]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing, Peoples R China

通讯作者信息:

  • [Tao, Yang]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2018 INTERNATIONAL CONFERENCE ON PROMISING ELECTRONIC TECHNOLOGIES (ICPET 2018)

年份: 2018

页码: 80-85

语种: 英文

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:660/3895494
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司