• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhao, Yali (Zhao, Yali.)

收录:

CPCI-S EI Scopus

摘要:

Vehicle tracking is one of the most challenging tasks in the field of visual tracking. A vehicle tracking algorithm based on CNN is constructed to solve the problem of rapid movement, scale change and occlusion of vehicles in outdoor environment. The CNN is used to extract feature sets containing positive and negative samples. The output of the CNN is used as the input of the Logistics classifier to obtain the vehicle classifier, and the particle filter is used to track the target online. The experimental results show that the depth characteristics of CNN extraction can effectively distinguish between the target and the background, and combined with particle filtering algorithm for online tracking, it has high tracking accuracy and strong robustness. Compared with the existing tracking algorithms, the vehicle can be better tracked when faced with changes in lighting, vehicle occlusion, and scale changes.

关键词:

Deep learning Vehicle Detection Particle filter Vehicle tracking CNN

作者机构:

  • [ 1 ] [Zhao, Yali]Beijing Univ Technol, Fac Informat Technol, 100 Flat Pk, Beijing, Peoples R China

通讯作者信息:

  • [Zhao, Yali]Beijing Univ Technol, Fac Informat Technol, 100 Flat Pk, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ICAIP 2018: 2018 THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN IMAGE PROCESSING

年份: 2018

页码: 138-143

语种: 英文

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:2074/4264821
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司