• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Ming Yang (Wang, Ming Yang.) | Li, Chen Jiang (Li, Chen Jiang.) | Sun, Jian Dong (Sun, Jian Dong.) | Xu, Wei Ran (Xu, Wei Ran.) | Gao, Sheng (Gao, Sheng.) | Zhang, Ya Hao (Zhang, Ya Hao.) | Wang, Pu (Wang, Pu.) | Li, Jun Liang (Li, Jun Liang.)

收录:

CPCI-S

摘要:

Text comprehension and information retrieval are two essential methods which could be reinforced by modeling to semantic similarity in sentences and phrases. However, there are general problems of traditional methods on LSTM which is used to process the input sentences. Those semantic vectors cannot fully represent the entire information sequence and the information contained in firstly input content will he diluted or overwritten by the late r information. The longer the input sequence, the more serious this phenomenon is. In order to address these problems, we propose new methods with self-attention. It can incorporate weights of special words and highlight the comparison of the similarity in key words. Compared with normal self-attention which can only incorporate the weight of the key words into the naive sentences and describe position information on sentences through position encoding. Our experiment shows that new method can improve the performance of model.

关键词:

LSTM Self-attention Similarity Weight

作者机构:

  • [ 1 ] [Wang, Ming Yang]Beijing Univ Posts & Telecommun, Beijing, Peoples R China
  • [ 2 ] [Li, Chen Jiang]Beijing Univ Posts & Telecommun, Beijing, Peoples R China
  • [ 3 ] [Sun, Jian Dong]Beijing Univ Posts & Telecommun, Beijing, Peoples R China
  • [ 4 ] [Xu, Wei Ran]Beijing Univ Posts & Telecommun, Beijing, Peoples R China
  • [ 5 ] [Gao, Sheng]Beijing Univ Posts & Telecommun, Beijing, Peoples R China
  • [ 6 ] [Wang, Pu]Beijing Univ Posts & Telecommun, Beijing, Peoples R China
  • [ 7 ] [Zhang, Ya Hao]Beijing Univ Technol, Beijing, Peoples R China
  • [ 8 ] [Li, Jun Liang]Luoyang Elect Equipment Test Ctr, Luoyang, Peoples R China

通讯作者信息:

  • [Wang, Ming Yang]Beijing Univ Posts & Telecommun, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON NETWORK INFRASTRUCTURE AND DIGITAL CONTENT (IEEE IC-NIDC)

ISSN: 2374-0272

年份: 2018

页码: 16-19

语种: 英文

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:392/3699666
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司