• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Xiaolin (Han, Xiaolin.) | Luo, Jiqiang (Luo, Jiqiang.) | Yu, Jing (Yu, Jing.) | Sun, Weidong (Sun, Weidong.)

收录:

CPCI-S

摘要:

Matrix factorization with non-negative constrains is widely used in hyperspectral image fusion. Nevertheless, the non-negative restriction on the sparse coefficients limits the efficiency of dictionary representation. To solve this problem, a new hyperspectral image fusion method based on non-factorization sparse representation and error matrix estimation is proposed in this paper, for the fusion of remotely sensed high-spatial multi-bands image with low-spatial hyperspectral image in the same scene. Firstly, an efficient spectral dictionary learning method is specifically adopted for the construction of the spectral dictionary, which avoids the procedure of matrix factorization. Then, the sparse codes of the high-spatial multi-bands image with respect to the learned spectral dictionary are estimated using the alternating direction method of multipliers (ADMM) without non-negative constrains. For improving the quality of final fusion result, an error matrix estimation method is also proposed, exploiting the spatial structure information after non-factorization sparse representation. Experimental results both on simulated and real datasets demonstrate that, compared with the related state-of-the-art methods, our proposed method achieves the highest quality of hyperspectral image fusion, which can improve PSNR over 2.5844 and SAM over 0.3758.

关键词:

hyperspectral image fusion dictionary learning non-factorization sparse representation error matrix estimation

作者机构:

  • [ 1 ] [Han, Xiaolin]Tsinghua Univ, Dept Elect Engn, Tsinghua Natl Lab Informat Sci & Technol, State Key Lab Intelligence Technol & Syst, Beijing 100084, Peoples R China
  • [ 2 ] [Sun, Weidong]Tsinghua Univ, Dept Elect Engn, Tsinghua Natl Lab Informat Sci & Technol, State Key Lab Intelligence Technol & Syst, Beijing 100084, Peoples R China
  • [ 3 ] [Luo, Jiqiang]Beijing Inst Technol, Sch Opte Elect, Beijing 100081, Peoples R China
  • [ 4 ] [Yu, Jing]Beijing Univ Technol, Colg Comp Sci & Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Han, Xiaolin]Tsinghua Univ, Dept Elect Engn, Tsinghua Natl Lab Informat Sci & Technol, State Key Lab Intelligence Technol & Syst, Beijing 100084, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017)

ISSN: 2376-4066

年份: 2017

页码: 1155-1159

语种: 英文

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:32/3918858
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司