• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Jinfu (Yang, Jinfu.) (学者:杨金福) | Zhang, Jingling (Zhang, Jingling.) | Li, Mingai (Li, Mingai.) (学者:李明爱) | Wang, Meijie (Wang, Meijie.)

收录:

CPCI-S EI Scopus

摘要:

Instance semantic segmentation has already been a promising direction, but many leading approaches are lack of detailed structural information and unable to segment small size objects. In this paper, we present a novel segmentation framework, called Scale-aware Patch Fusion Network (SPF). Our unified end-to-end trainable network consists of three components, namely, multi-scale patch generator, semantic segmentation network and patch fusion algorithm. This patchbased method aggregates information from different scales of patches via fusing local segmentation prediction results. The proposed approach is thus more effective and simple. Experiments on VOC 2012 segmentation val, VOC 2012 SDS val, MS COCO datasets validate the effectiveness of our approach.

关键词:

Structural information Instance semantic segmentation SPF Scale-aware

作者机构:

  • [ 1 ] [Yang, Jinfu]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Zhang, Jingling]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Li, Mingai]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Wang, Meijie]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Yang, Jinfu]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 6 ] [Zhang, Jingling]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 7 ] [Li, Mingai]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 8 ] [Wang, Meijie]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China

通讯作者信息:

  • [Zhang, Jingling]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China;;[Zhang, Jingling]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

COMPUTER VISION, PT II

ISSN: 1865-0929

年份: 2017

卷: 772

页码: 521-532

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:500/4931416
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司