• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qu, Panling (Qu, Panling.) | Zhang, Hui (Zhang, Hui.) | Zhuo, Li (Zhuo, Li.) | Zhang, Jing (Zhang, Jing.) | Chen, Guoying (Chen, Guoying.)

收录:

CPCI-S EI Scopus

摘要:

Automatic tongue image segmentation is a key technology for the research on tongue characterization in Traditional Chinese Medicine. Due to the complexity of automatic tongue image segmentation, the automation degree and segmentation precision of the existing methods for tongue image segmentation are not satisfied. To address the above problem, a method of automatic tongue image segmentation using deep neural network is proposed in this paper. In our method, an image quality evaluation method based on brightness statistics is proposed to judge whether the input image is to be segmented, and the SegNet is employed to train on the TongueDataset1 and TongueDataset2 to obtain the deep model for automatic tongue image segmentation. TongueDataset1 and TongueDataset2 are specially constructed for tongue image segmentation. The experimental results on TongueDataset1 and TongueDataset2 show that the mean intersection over union score can reach to 95.89% and 90.72%, respectively. Compared with the traditional methods of tongue image segmentation, our method can avoid the complicated process of extracting features manually, and has obvious superiority in the segmentation performance.

关键词:

Tongue diagnosis Automatic tongue image segmentation Deep neural network Tongue image dataset SegNet Traditional Chinese Medicine

作者机构:

  • [ 1 ] [Qu, Panling]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China
  • [ 2 ] [Zhang, Hui]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China
  • [ 3 ] [Zhuo, Li]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China
  • [ 4 ] [Zhang, Jing]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China
  • [ 5 ] [Chen, Guoying]Beijing Univ Technol, Off Sci & Technol Dev, Beijing, Peoples R China

通讯作者信息:

  • [Zhuo, Li]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2017, PT I

ISSN: 0302-9743

年份: 2017

卷: 10361

页码: 247-259

语种: 英文

被引次数:

WoS核心集被引频次: 17

SCOPUS被引频次: 25

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:439/3909522
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司