• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jia, Xibin (Jia, Xibin.) (学者:贾熹滨) | Chen, Xinyuan (Chen, Xinyuan.) | Miao, Jun (Miao, Jun.)

收录:

CPCI-S EI Scopus

摘要:

This paper aims to develop a facial expression recognition algorithm for a personal digital assistance application. Based on the Kinect RGB-D images, we propose a multiway extreme learning machine (MW-ELM) for facial expression recognition, which reduces the computing complexity significantly by processing the RGB and Depth channels separately at the input layer. Referring to our earlier work on semi-supervised online sequential extreme learning machine (SOS-ELM) that enhances the application to do the fast and incremental learning based on a few labeled samples together with some un-labeled samples of the specific user, we propose to do the parameter training with semi-supervising and on-line sequential methods for the higher hidden layer. The experiment of our proposed multiway semi-supervised online sequential extreme learning machine (MW-SOS-ELM) applying in the facial expression recognition, shows that our proposed approach achieves almost the same recognition accuracy with SOS-ELM, but reduces recognition time significantly, under the same configuration of hidden nodes. Additionally, the experiments show that our semi-supervised learning scheme reduces the requirement of labeled data sharply.

关键词:

Semi-supervising On-line sequential learning Facial expression recognition Extreme learning machine Multi-way structure

作者机构:

  • [ 1 ] [Jia, Xibin]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Chen, Xinyuan]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Miao, Jun]Beijing Informat Sci & Technol Univ, Sch Comp Sci, Beijing, Peoples R China

通讯作者信息:

  • [Miao, Jun]Beijing Informat Sci & Technol Univ, Sch Comp Sci, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2017, PT II

ISSN: 0302-9743

年份: 2017

卷: 10362

页码: 240-253

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:660/4295642
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司