• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Deng, Wanghua (Deng, Wanghua.) | Huang, Zhangqin (Huang, Zhangqin.) (学者:黄樟钦)

收录:

CPCI-S

摘要:

Due to the small size and no battery needed, passive radio frequency identification(RFID) tag is easily integrated to everything. It is useful on item-level location scenarios like finding an important document at home. Received signal strength indicator(RSSI) based fingerprint indoor positioning methodology is not only appropriate for the active short range radio frequency(RF) system, but also suitable for passive RFID system. According to our repeated experiments, we find out that although a tag's received signal strength(RSS) values distribution against a fixed position doesn't conform to Gaussian process, the value probability distributions is always similar in the nearby positions. A fingerprint-like solution by using RSS value probability distribution comparison for passive RFID system is presented in this paper. The first phase is to build a probability distribution fingerprint database for the targeted area, while the second phase is the real-time probability comparison and location determination. Based on our experimental result, the new solution using our probability distribution comparison method performs higher positioning accuracy than the existing approach.

关键词:

Probability Passive RFID Indoor positioning Signal strength fingerprint

作者机构:

  • [ 1 ] [Deng, Wanghua]Beijing Univ Technol, Beijing Engn Res Ctr IoT Software & Syst, Beijing Adv Innovat Ctr Future Internet Technol, Beijing, Peoples R China
  • [ 2 ] [Huang, Zhangqin]Beijing Univ Technol, Beijing Engn Res Ctr IoT Software & Syst, Beijing Adv Innovat Ctr Future Internet Technol, Beijing, Peoples R China

通讯作者信息:

  • 黄樟钦

    [Huang, Zhangqin]Beijing Univ Technol, Beijing Engn Res Ctr IoT Software & Syst, Beijing Adv Innovat Ctr Future Internet Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC)

年份: 2017

页码: 905-909

语种: 英文

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:511/3900973
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司