• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tang, Jian (Tang, Jian.) | Jia, Meijuan (Jia, Meijuan.) | Zhang, Jian (Zhang, Jian.) | Jia, Meiying (Jia, Meiying.)

收录:

CPCI-S EI Scopus

摘要:

Most of the intrusion detection models (IDM) are constructed with off-line training data. Time-variance characteristic of the practical network system cannot be embodied in the off-line constructed IDM. On-line updating of the off-line IDM with the valued new samples is very necessary. In this paper, a new on-line instruction detection model based on approximate linear dependent (ALD) condition with linear latent feature extraction is proposed to address this problem. Specifically, the valued samples which can represent drift of the practical network are indentified with ALD and prior knowledge. Then, these selected samples are used to update the off-line IDM based on on-line latent feature extraction method and fast machine learning algorithm with sample-based updating strategy. Experiments based on KDD99 data are used to validate the proposed approach.

关键词:

On-line updating Approximate linear dependent Latent feature extraction Intrusion detection model Fast machine learning algorithm

作者机构:

  • [ 1 ] [Tang, Jian]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Jia, Meijuan]Inner Mongolia Univ Technol, Hohhot 010051, Inner Mongolia, Peoples R China
  • [ 3 ] [Zhang, Jian]NUIST, Sch Comp & Software, Nanjing 210044, Jiangsu, Peoples R China
  • [ 4 ] [Jia, Meiying]Beifang Jiaotong Univ, Res Inst Comp Technol, Beijing 100029, Peoples R China

通讯作者信息:

  • [Tang, Jian]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

CLOUD COMPUTING AND SECURITY, PT II

ISSN: 0302-9743

年份: 2017

卷: 10603

页码: 336-345

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:568/3902939
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司