• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Cuili (Yang, Cuili.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Wang, Lei (Wang, Lei.)

收录:

CPCI-S

摘要:

Echo state network (ESN) is a powerful tool for nonlinear system modeling. However, the random setting of structure (mainly the reservoir) may degrade its estimation accuracy. To create the optimal reservoir for a given task, a novel ESN design method based on differential evolution algorithm is proposed. Firstly, the weight matrix of reservoir is constructed via the singular value decomposition (SVD). Then, the corresponding singular values are optimized by using a variant of differential evolution algorithm. Finally, some comparisons are made which show that the proposed ESN has better training performance than other deterministic and evolutionary algorithm based ESNs.

关键词:

Optimization ESN Nonlinear system modeling Differential algorithm

作者机构:

  • [ 1 ] [Yang, Cuili]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Lei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Yang, Cuili]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 5 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Wang, Lei]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • [Yang, Cuili]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Yang, Cuili]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017)

ISSN: 2161-2927

年份: 2017

页码: 3977-3982

语种: 英文

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:888/3906985
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司