• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ma, Shijie (Ma, Shijie.) | Yang, Chili (Yang, Chili.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

CPCI-S

摘要:

In order to overcome the defects of gradient descent (GD) algorithm which lead to slow convergence and easy to fall into local minima, this paper proposes an adaptive optimum steepest descent (AOSD) learning algorithm which is used for the recurrent radial basis function (RRBF) neural network. Compared with traditional GD algorithm, the adaptive learning rate is integrated into the AOSD learning algorithm in order to accelerate the convergence speed of training algorithm and improve the network performance of nonlinear system modeling. Several comparisons show that the proposed RRBF has faster convergence speed and better prediction performance.

关键词:

AOSD learning algorithm fast convergence Nonlinear system modeling recurrent RBF neural network

作者机构:

  • [ 1 ] [Ma, Shijie]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Yang, Chili]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Ma, Shijie]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 5 ] [Yang, Chili]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Qiao, Junfei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • [Ma, Shijie]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Ma, Shijie]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017)

ISSN: 2161-2927

年份: 2017

页码: 3942-3947

语种: 英文

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:602/3908338
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司