• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Fei (Li, Fei.) | Yang, Cuili (Yang, Cuili.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

CPCI-S

摘要:

To solve the problem of gradient descent (GD) method which has low accuracy and easily falling into local optimum, the radial basis function (RBF) based on immune algorithm system (IAS-RBF) is proposed. In this method, each antibody is a RBF neural network and the optimal affinity is calculated by immune algorithm system (IAS) to get the best antibody, then the optimal parameter of RBF neural network (i.e., the RBF centers, the widths, and the output weights) are obtained. The simulation results show that IAS-RBF overcomes the problem of premature convergence, and has a better accuracy than other RBF neural networks.

关键词:

immune algorithm system nonlinear approximation ability Radial basis function neural networks

作者机构:

  • [ 1 ] [Li, Fei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Yang, Cuili]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Fei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 5 ] [Yang, Cuili]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Qiao, Junfei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • [Li, Fei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Li, Fei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017)

ISSN: 2161-2927

年份: 2017

页码: 4598-4603

语种: 英文

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:475/5064175
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司