• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang Gongming (Wang Gongming.) | Li Wenjing (Li Wenjing.) | Qiao Junfei (Qiao Junfei.) (学者:乔俊飞) | Wu Guandi (Wu Guandi.)

收录:

CPCI-S

摘要:

Deep learning has been successfully applied into pattern recognition due to its deep architecture and effective unsupervised learning, and deep belief network (DBN) is a popular model based on deep learning technique. In this paper, a DBN identification model based on partial least square regression (PLSR), named PLSR-DBN, is proposed for nonlinear system identification. In order to improve the identification accuracy, PLSR is introduced into the supervised fine-tuning of DBN to elimate the overfitting and local minimum resulted from gradients-based learning, and contrastive divergence (CD) algorithm is used in unsupervised pre-training. Finally, the proposed PLSR-DBN is tested on a benchmark nonlinear system. The experiment results show that the proposed PLSR-DBN has a better performance on nonlinear system identification than other similar methods.

关键词:

Deep belief network Nonliear system identification fine-tuning Partial least square regression Deep learning

作者机构:

  • [ 1 ] [Wang Gongming]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Li Wenjing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Qiao Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Wang Gongming]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 5 ] [Li Wenjing]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Qiao Junfei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 7 ] [Wu Guandi]Sinopec, Tech Test Ctr, Shengli Oilfield Branch, Dongying 257000, Peoples R China

通讯作者信息:

  • [Wang Gongming]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Wang Gongming]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017)

ISSN: 2161-2927

年份: 2017

页码: 10807-10812

语种: 英文

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:371/3912337
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司