• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wu, Lifang (Wu, Lifang.) (学者:毋立芳) | Liu, Shuang (Liu, Shuang.) | Jian, Meng (Jian, Meng.) | Luo, Jiebo (Luo, Jiebo.) | Zhang, Xiuzhen (Zhang, Xiuzhen.) | Qi, Mingchao (Qi, Mingchao.)

收录:

CPCI-S

摘要:

Deep learning-based visual sentiment analysis requires a large dataset for training. Dataset from social networks is popular but noisy because some images collected in this manner are mislabeled. Therefore, it is necessary to refine the datasct. Based on observations to such datascts, wc propose a refinement algorithm based on the sentiments of adjective-noun pairs (ANPs) and tags. We first determine the unreliably labeled images through the sentiment contradiction between the ANPs and tags. These images are removed if the numbers of tags with positive and negative sentiments are equal. The remaining images are labeled again based on the majority vote of the tags' sentiments. Furthermore, we improve thc traditional deep learning model by combining the softmax and Euclidean loss functions. Additionally, the improved model is trained using the refined dataset. Experiments demonstrate that both the dataset refinement algorithm and improved deep learning model are beneficial, The proposed algorithms outperform the benchmark results.

关键词:

mislabeled images Visual sentiment analysis deep learning sentiment conflict

作者机构:

  • [ 1 ] [Wu, Lifang]Beijing Univ Technol, Sch Informat & Commun Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Shuang]Beijing Univ Technol, Sch Informat & Commun Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Jian, Meng]Beijing Univ Technol, Sch Informat & Commun Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Qi, Mingchao]Beijing Univ Technol, Sch Informat & Commun Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Luo, Jiebo]Univ Rochester, Dept Comp Sci, Rochester, NY 14623 USA
  • [ 6 ] [Zhang, Xiuzhen]RMIT Univ, Dept Comp Sci & IT, Melbourne, Vic 3000, Australia

通讯作者信息:

  • 毋立芳

    [Wu, Lifang]Beijing Univ Technol, Sch Informat & Commun Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP)

ISSN: 1522-4880

年份: 2017

页码: 1322-1326

语种: 英文

被引次数:

WoS核心集被引频次: 10

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:212/4517265
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司