• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhao, Jing (Zhao, Jing.) (学者:赵京) | Wang, Lei (Wang, Lei.) | Yang, Cuili (Yang, Cuili.)

收录:

CPCI-S

摘要:

Echostate network (ESN), a novel recurrent neural network, has a randomly and sparsely connected reservoir. Since the reservoir is very large, the collinearity problem may exist in ESN. To overcome this problem and get a sparse architecture, an adaptive lasso echo state network (ALESN) is proposed, in which the adaptive lasso algorithm is used to calculate the output weights. The proposed ALESN can deal with the collinearity problem and has the oracle property. Simulation results show that the proposed ALESN has better performance and more compact architecture than some other existing methods.

关键词:

collinearity problem echo state network adaptive lasso algorithm time series prediction

作者机构:

  • [ 1 ] [Zhao, Jing]China Natl Inst Standardizat, Beijing, Peoples R China
  • [ 2 ] [Wang, Lei]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Yang, Cuili]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • 赵京

    [Zhao, Jing]China Natl Inst Standardizat, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

2017 CHINESE AUTOMATION CONGRESS (CAC)

ISSN: 2688-092X

年份: 2017

页码: 5108-5111

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:1099/3902476
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司