• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tang, Jian (Tang, Jian.) (学者:汤健) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Gu, Ke (Gu, Ke.) (学者:顾锞) | Yan, Aijun (Yan, Aijun.) (学者:严爱军)

收录:

CPCI-S

摘要:

Municipal solid waste incineration (MSWI) becomes the most popular technique to enhance environment protection. This process produces one of the most toxic chemicals in the world, i.e., polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). The dioxin (DXN) production should be restricted rigidly by using operation optimization and control of MSWI process based on present industrial devices. However, it is difficult to realize the on-line real-time continuous measuring of DXN duo to the complexity formation mechanism and high-cost long-time off-line detection approach. In this paper, a soft measuring method based on virtual sample generation (VSG) is used to address this problem at the first time. A few numbers of true training samples are used to produce virtual training samples based on feasibility-based programming (FBP) model using selective ensemble kernel partial least squares (SENKPLS) and prior knowledge. Simulation result based on dataset in reference [31] for a HL MSWI process shows effectiveness of the proposed method.

关键词:

dioxins (DXN) Municipal solid waste incineration (MSWI) selective ensemble kernel partial least squares (SENKPLS) soft measuring virtual sample generation (VSG)

作者机构:

  • [ 1 ] [Tang, Jian]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Gu, Ke]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Yan, Aijun]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • 汤健

    [Tang, Jian]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

2017 CHINESE AUTOMATION CONGRESS (CAC)

ISSN: 2688-092X

年份: 2017

页码: 7323-7328

语种: 英文

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:697/3616968
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司