• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Gongming (Wang, Gongming.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Li, Xiaoli (Li, Xiaoli.) (学者:李晓理) | Wang, Lei (Wang, Lei.) | Qian, Xiaolong (Qian, Xiaolong.)

收录:

CPCI-S Scopus

摘要:

Classification problem is important for big data processing, and deep learning method named deep belief network (DBN) is successfully applied into classification. But traditional DBN is an unsupervised learning method, which leads to a gap between extracted features and concrete tasks. In this paper, a semi-supervised DBN (SSDBN) based on semi-supervised restricted Boltzmann machine (SSRBM) is proposed to shorten the gap and improve the accuracy of classification. Firstly, through introducing relevance constraint, supervised information is equivalently integrated into the learning process of restricted Boltzmann machine. Secondly, SSDBN-based model is constructed to improve the accuracy of classification problem. Finally, the proposed SSDBN is validated with hand-written digits classification standard dataset MNIST, and experimental results show that SSDBN outperforms traditional DBN and other models with respect to classification. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

关键词:

contrastive experiment SSDBN deep learning Classification problem SSRBM

作者机构:

  • [ 1 ] [Wang, Gongming]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Li, Xiaoli]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Wang, Lei]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Qian, Xiaolong]Northeastern Univ, Coll Informat Sci & Engn, Shenyang, Liaoning, Peoples R China

通讯作者信息:

  • [Wang, Gongming]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

IFAC PAPERSONLINE

ISSN: 2405-8963

年份: 2017

期: 1

卷: 50

页码: 4174-4179

语种: 英文

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:874/3917110
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司