• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhu, Nafei (Zhu, Nafei.) | Zhang, Min (Zhang, Min.) | Feng, Dengguo (Feng, Dengguo.) | He, Jingsha (He, Jingsha.) (学者:何泾沙)

收录:

CPCI-S EI Scopus

摘要:

Privacy is a fundamental issue in big data. Meanwhile, determining semantic relationships between words and phrases in privacy is required for effective privacy protection to the data that originates from a variety of sources, a main characteristic of big data. WordNet has been used as one of the most popular ways of measuring semantic similarity between words. In this paper, through comparison analysis, we show that WordNet is not very adequate for measuring semantic similarity or relatedness between words when concerning privacy. The analysis consists of an experiment to get human rating scores as the benchmark dataset and the comparison between results from WordNet based measures and the benchmark dataset to reach the conclusion.

关键词:

privacy semantic correlation semantic relatedness semantic similarity WordNet

作者机构:

  • [ 1 ] [Zhu, Nafei]Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, Trusted Comp & Informat Assurance Lab, 4 South 4th St, Beijing 100190, Peoples R China
  • [ 2 ] [Zhang, Min]Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, Trusted Comp & Informat Assurance Lab, 4 South 4th St, Beijing 100190, Peoples R China
  • [ 3 ] [Feng, Dengguo]Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, Trusted Comp & Informat Assurance Lab, 4 South 4th St, Beijing 100190, Peoples R China
  • [ 4 ] [He, Jingsha]Beijing Univ Technol, Fac Informat Technol, 100 Ping Le Yuan, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zhu, Nafei]Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, Trusted Comp & Informat Assurance Lab, 4 South 4th St, Beijing 100190, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2017 13TH INTERNATIONAL CONFERENCE ON SEMANTICS, KNOWLEDGE AND GRIDS (SKG 2017)

ISSN: 2325-0623

年份: 2017

页码: 45-49

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:323/3659709
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司