• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li Dingyuan (Li Dingyuan.) | Liu Fu (Liu Fu.) | Qiao Junfei (Qiao Junfei.) (学者:乔俊飞) | Li Rong (Li Rong.)

收录:

CPCI-S

摘要:

Echo state network (ESN) is one of the most well-known types of reservoir computing because of its outstanding performance when chaotic time series prediction is conducted. However, sometimes it works poorly because the reservoir connectivity and weight structure are created randomly. To solve this problem, we propose a modified ESN based on contribution rate algorithm. By pruning uninmportant connections without loss of majoy information, the proposed method can not only optimize the network structure, but also improve the generalization performance of network. Experimental results and performance comparisons demonstrate that the modified ESN outperforms the ESN without optimization.

关键词:

contribution rate algorithm Structure design Reservoir computing

作者机构:

  • [ 1 ] [Li Dingyuan]Jilin Univ, Coll Commun Engn, Changchun 130025, Jilin, Peoples R China
  • [ 2 ] [Liu Fu]Jilin Univ, Coll Commun Engn, Changchun 130025, Jilin, Peoples R China
  • [ 3 ] [Li Dingyuan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Qiao Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Li Rong]Beijing Vocat Coll Agr, Dept Informat Technol, Beijing 102442, Peoples R China

通讯作者信息:

  • [Li Dingyuan]Jilin Univ, Coll Commun Engn, Changchun 130025, Jilin, Peoples R China;;[Li Dingyuan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC)

ISSN: 1948-9439

年份: 2017

页码: 4350-4353

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:393/3901605
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司