• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yuan, Ye (Yuan, Ye.) | Xun, Guangxu (Xun, Guangxu.) | Jia, Kebin (Jia, Kebin.) (学者:贾克斌) | Zhang, Aidong (Zhang, Aidong.)

收录:

CPCI-S

摘要:

Epileptic seizure detection has gained increasing attention in clinical therapy. Scalp electroencephalogram (EEG) analysis is a common way to capture brain abnormality for seizure onset detection. This paper presents a novel context-learning based approach using multi-feature fusion to compensate for incomplete description of single feature in epileptic EEG signals. First, EEG scalogram sequence is generated using wavelet transform to represent the time-frequency information. Second, three sets of EEG context features are unsupervisedly learned in parallel by using global principal component analysis (GPCA), stacked denoising autoencoders (SDAEs) and EEG embeddings, respectively. Finally, the multi-features are concatenated into a fixed-length feature vector for seizure classification. The experimental results conducted on two real EEG datasets demonstrate that the proposed cross-patient learning model is able to extract meaningful context features from different perspectives, and hence can detect the onset of epileptic seizure effectively.

关键词:

作者机构:

  • [ 1 ] [Yuan, Ye]Beijing Univ Technol, Adv Innovat Ctr Future Internet Technol, Beijing, Peoples R China
  • [ 2 ] [Jia, Kebin]Beijing Univ Technol, Adv Innovat Ctr Future Internet Technol, Beijing, Peoples R China
  • [ 3 ] [Yuan, Ye]Beijing Lab Adv Informat Networks, Beijing, Peoples R China
  • [ 4 ] [Jia, Kebin]Beijing Lab Adv Informat Networks, Beijing, Peoples R China
  • [ 5 ] [Yuan, Ye]Beijing Univ Technol, Coll Informat & Commun Engn, Beijing, Peoples R China
  • [ 6 ] [Jia, Kebin]Beijing Univ Technol, Coll Informat & Commun Engn, Beijing, Peoples R China
  • [ 7 ] [Xun, Guangxu]SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY USA
  • [ 8 ] [Zhang, Aidong]SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY USA

通讯作者信息:

  • [Yuan, Ye]Beijing Univ Technol, Adv Innovat Ctr Future Internet Technol, Beijing, Peoples R China;;[Yuan, Ye]Beijing Lab Adv Informat Networks, Beijing, Peoples R China;;[Yuan, Ye]Beijing Univ Technol, Coll Informat & Commun Engn, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM)

ISSN: 2156-1125

年份: 2017

页码: 694-699

语种: 英文

被引次数:

WoS核心集被引频次: 26

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:1198/3896054
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司