• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang Quanmin (Wang Quanmin.) | Li Zhenguo (Li Zhenguo.) | Zheng Shuang (Zheng Shuang.) | Gu Shi (Gu Shi.) | Sun Yanfeng (Sun Yanfeng.) (学者:孙艳丰) | Wang Kaiyang (Wang Kaiyang.)

收录:

CPCI-S

摘要:

The recent growth in network usage has motivated the creation of new malicious code for various purposes, including economic ones. Today's signature-based anti-viruses are very accurate, but cannot detect new malicious code. Recently, classification algorithms were employed successfully for the detection of unknown malicious code. However, most of the studies use byte sequence n-gram representation of the binary code of the executable files on windows. We propose the use of Dalvik Operation Code on Android, generated by disassembling the application. We then use n-gram of the operation code as features for the classification process. We present a full methodology for the detection of unknown malicious code, based on text categorization concepts. The experiment results show that the method results are in a high accuracy rate.

关键词:

detection Dalvik operation code malicious

作者机构:

  • [ 1 ] [Wang Quanmin]Beijing Univ Technol, Dept Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Li Zhenguo]Beijing Univ Technol, Dept Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Zheng Shuang]Beijing Univ Technol, Dept Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Gu Shi]Beijing Univ Technol, Dept Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Sun Yanfeng]Beijing Univ Technol, Dept Informat Technol, Beijing, Peoples R China
  • [ 6 ] [Wang Kaiyang]Beijing Univ Technol, Dept Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • [Wang Quanmin]Beijing Univ Technol, Dept Informat Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INFORMATION ENGINEERING (ICACIE 2017)

ISSN: 2352-5401

年份: 2017

卷: 119

页码: 53-57

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:603/3900344
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司