• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Fang (Liu, Fang.) | Lu, Lixia (Lu, Lixia.) | Huang, Guangwei (Huang, Guangwei.)

收录:

CPCI-S

摘要:

A new algorithm of unmanned aerial vehicle landforms image classification based on sparse autoencoder(SAE) is proposed in view of the drawbacks of single layer sparse autoencoder for feature learning that it is easy to lose the deep abstract feature and the feature lacks the robustness. In this paper, first, by constructing the deep sparse autoencoder, the image layer by layer learning and automatically extract each layer features. Then, in order to improve the feature representations, the each layer feature weights and the reorganized feature set are obtained according to the feature set weighting method. Finally, combining the strong global search ability of genetic algorithm (GA) and the excellent performance of support vector machine (SVM), the image classification is completed efficiently and accurately. The experimental results show that the proposed algorithm can automatically learn the deep feature of the image, and the reorganized feature has high discriminations image representations, which effectively improves the image classification accuracy.

关键词:

support vector machine feature learning sparse autoencoder genetic algorithm image classification

作者机构:

  • [ 1 ] [Liu, Fang]Beijing Univ Technol, Coll Informat & Commun Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Lu, Lixia]Beijing Univ Technol, Coll Informat & Commun Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Huang, Guangwei]Beijing Univ Technol, Coll Informat & Commun Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • [Liu, Fang]Beijing Univ Technol, Coll Informat & Commun Engn, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2017 IEEE INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS (CIS) AND IEEE CONFERENCE ON ROBOTICS, AUTOMATION AND MECHATRONICS (RAM)

年份: 2017

页码: 1-6

语种: 英文

被引次数:

WoS核心集被引频次: 44

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:1164/4283015
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司