• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Bo (Liu, Bo.) (学者:刘博) | Yan, Shuo (Yan, Shuo.) | You, Huanling (You, Huanling.) | Dong, Yan (Dong, Yan.) | Li, Jianqiang (Li, Jianqiang.) (学者:李建强) | Li, Yong (Li, Yong.) | Lang, Jianlei (Lang, Jianlei.) (学者:郎建垒) | Gu, Rentao (Gu, Rentao.)

收录:

CPCI-S EI Scopus

摘要:

At present, high road surface temperature (RST) is threatening the safety of expressway transportation. It can lead to accidents and damages to road, accordingly, people have paid more attention to RST forecasting. Numerical methods on RST prediction are often hard to obtain precise parameters, whereas statistical methods cannot achieve desired accuracy. To address these problems, this paper proposes GBELM-RBF method that utilizes gradient boosting to ensemble Radial Basis Function Extreme Learning Machine. To evaluate the performance of the proposed method, GBELM-RBF is compared with other ELM algorithms on the datasets of airport expressway and Badaling expressway during November 2012 and September 2014. The root mean squared error (RMSE), accuracy and Pearson Correlation Coefficient (PCC) of these methods are analyzed. The experimental results show that GBELM-RBF has the best performance. For airport expressway dataset, the RMSE is less than 3, the accuracy is 78.8% and PCC is 0.94. For Badaling expressway dataset, the RMSE is less than 3, the accuracy is 81.2% and PCC is 0.921.

关键词:

neural networks prediction gradient boosting road surface temperature

作者机构:

  • [ 1 ] [Liu, Bo]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Bo]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Yan, Shuo]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Jianqiang]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Yong]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 6 ] [You, Huanling]China Meteorol Adm, Inst Urban Meteorol, Beijing 100089, Peoples R China
  • [ 7 ] [Dong, Yan]Beijing Meteorol Serv Ctr, Beijing 100089, Peoples R China
  • [ 8 ] [Lang, Jianlei]Beijing Univ Technol, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 9 ] [Lang, Jianlei]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 10 ] [Gu, Rentao]Beijing Univ Posts & Telecommun, Beijing Lab Adv Informat Networks, Sch Informat & Commun Engn, Beijing 100876, Peoples R China

通讯作者信息:

  • 刘博

    [Liu, Bo]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China;;[Liu, Bo]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA)

年份: 2017

页码: 977-980

语种: 英文

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:455/3908166
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司