• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Mengdi (Wang, Mengdi.) | Yu, Jing (Yu, Jing.) | Niu, Lijuan (Niu, Lijuan.) | Sun, Weidong (Sun, Weidong.)

收录:

CPCI-S

摘要:

Hyperspectral images(HSIs) provide hundreds of narrow spectral bands for the land-covers, thus can provide more powerful discriminative information for the land-cover c1assification. However, HSIs suffer from the curse of high dimensionality, therefore dimension reduction and feature extraction are essential for the application of HSIs. In this paper, we propose an unsupervised feature extraction method for HSIs using combined low rank representation and locally linear embedding (LRR_LLE). The proposed method can simultaneously use both the spectral and spatial correlation within HSIs, with LRR modelling the intrinsic property of union of low-rank subspaces and LLE considering the correlation within spatial neighbours. Experiments are conducted on real HSI datasets and the c1assification results demonstrate that the features extracted by LRR_ LLE are more discriminative than the state-of-art methods.

关键词:

Hyperspectral image low rank representation locally linear embedding unsupervised feature extraction

作者机构:

  • [ 1 ] [Wang, Mengdi]Tsinghua Univ, Dept Elect Engn, Tsinghua Natl Lab Informat Sci & Technol, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
  • [ 2 ] [Sun, Weidong]Tsinghua Univ, Dept Elect Engn, Tsinghua Natl Lab Informat Sci & Technol, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
  • [ 3 ] [Yu, Jing]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Niu, Lijuan]Chinese Acad Med Sci, Canc Hosp, Beijing 100021, Peoples R China

通讯作者信息:

  • [Wang, Mengdi]Tsinghua Univ, Dept Elect Engn, Tsinghua Natl Lab Informat Sci & Technol, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)

ISSN: 1520-6149

年份: 2017

页码: 1428-1431

语种: 英文

被引次数:

WoS核心集被引频次: 17

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:648/3901146
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司