• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Duan, Pingzhou (Duan, Pingzhou.) | Liu, Weijun (Liu, Weijun.) | Lei, Jiawei (Lei, Jiawei.) | Sun, Zhirong (Sun, Zhirong.) (学者:孙治荣) | Hu, Xiang (Hu, Xiang.)

收录:

EI Scopus SCIE

摘要:

Sol-gel synthesis of a novel SnO2-Al2O3/CNT anode was conducted and adopted to the electrocatalyzing decomposition of aqueous ceftazidime in this study. The physical structure and chemical composition were observed and characterized by transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The results present SnO2 and Al2O3 nanoparticles were uniformly and compactly distributed on the carbon nanotubes, which is recognized to contributing to the recycling stability and catalytic activity improvements. The electrodeposited behaviors were investigated by cyclic voltammograms, linear sweep voltammograms and hydroxyl radical generation test, illustrating this anode exhibited excellent catalyzing properties with increased production of center dot OH radicals. The removal efficiency of ceftazidime was monitored with highperformance liquid chromatograph (HPLC) and results indicated an enhancement from 40 % to nearly 90 % with SnO2-Al2O3/CNT anode. In addition, the activation by peroxydisulfate (PDS) and Fenton reaction improved the mineralization degree of ceftazidime, with 45.2 % TOC removal by adding 2 mM PDS and 55.1 % TOC removal by adding 2 mM Fe2+, compared with 40 % TOC removal by anodic oxidation alone. Although the mineralization rate of electrooxidation-PDS process was lower, it exhibited a broader pH stability range than electrooxidation-Fenton coupling process. The mechanism analysis indicate electrooxidation-PDS was dominated by SO4 center dot- radicals, which is favored at basic solutions. The degradation intermediates were detected by liquid chromatograph-mass spectrometer technology, and a complete degradation pathway was proposed. This method proves a simple, clean and efficient degradation method for removal of trace refractory pollutants in aqueous environment without the necessity of chemical recovery and pH adjustment.

关键词:

PDS activation Electro-Fenton SnO2-Al2O3/CNT Electrochemical degradation Ceftazidime Degradation pathway

作者机构:

  • [ 1 ] [Duan, Pingzhou]Beijing Univ Chem Technol, Coll Chem Engn, Beijing 100029, Peoples R China
  • [ 2 ] [Liu, Weijun]Beijing Univ Chem Technol, Coll Chem Engn, Beijing 100029, Peoples R China
  • [ 3 ] [Lei, Jiawei]Beijing Univ Chem Technol, Coll Chem Engn, Beijing 100029, Peoples R China
  • [ 4 ] [Hu, Xiang]Beijing Univ Chem Technol, Coll Chem Engn, Beijing 100029, Peoples R China
  • [ 5 ] [Sun, Zhirong]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • [Hu, Xiang]Beijing Univ Chem Technol, 15 Beisanhuan East Rd, Beijing 100029, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING

ISSN: 2213-2929

年份: 2020

期: 4

卷: 8

7 . 7 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 24

SCOPUS被引频次: 26

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:586/3908322
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司