• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Zhongwei (Wang, Zhongwei.) | Shi, Yuliang (Shi, Yuliang.)

收录:

CPCI-S Scopus

摘要:

This paper presents a daily behavior identification algorithm based on sEMG to improve the accuracy of behavior identification. In the preprocessing stage, the original sEMG signal is effectively denoised by the combination of EMD denoising and wavelet denoising. In the feature extraction stage, the characteristics of MAV and AR model are extracted by time-frequency domain to express the behavior patterns. In the behavior classification stage, 8 features from 4 sEMG channels of MAV and AR model are use an input neurons of the BP neural network to improve the accuracy of behavior classification identification. Through the learning of a large number of training samples, the accuracy of the behavioral identification on the test samples comes to 91.02% in the experiment, which indicates that the daily behavior identification based on sEMG is a valuable method.

关键词:

Behavior Identification BP Neural Network sEMG Signal Denoising

作者机构:

  • [ 1 ] [Wang, Zhongwei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Shi, Yuliang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Wang, Zhongwei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

GREEN ENERGY AND SUSTAINABLE DEVELOPMENT I

ISSN: 0094-243X

年份: 2017

卷: 1864

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:320/3673283
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司