• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wen, Long (Wen, Long.) | Yu, Haiyang (Yu, Haiyang.)

收录:

CPCI-S Scopus

摘要:

The Android smartphone, with its open source character and excellent performance, has attracted many users. However, the convenience of the Android platform also has motivated the development of malware. The traditional method which detects the malware based on the signature is unable to detect unknown applications. The article proposes a machine learning-based lightweight system that is capable of identifying malware on Android devices. In this system we extract features based on the static analysis and the dynamitic analysis, then a new feature selection approach based on principle component analysis (PCA) and relief are presented in the article to decrease the dimensions of the features. After that, a model will be constructed with support vector machine (SVM) for classification. Experimental results show that our system provides an effective method in Android malware detection.

关键词:

PCA Support Vector Machine Relief Feature Selection Static Analysis Dynamitic Analysis

作者机构:

  • [ 1 ] [Wen, Long]Beijing Univ Technol, Fac Informat Technol, Beijing 100049, Peoples R China
  • [ 2 ] [Yu, Haiyang]Beijing Univ Technol, Fac Informat Technol, Beijing 100049, Peoples R China

通讯作者信息:

  • [Wen, Long]Beijing Univ Technol, Fac Informat Technol, Beijing 100049, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

GREEN ENERGY AND SUSTAINABLE DEVELOPMENT I

ISSN: 0094-243X

年份: 2017

卷: 1864

语种: 英文

被引次数:

WoS核心集被引频次: 29

SCOPUS被引频次: 47

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:2715/4272601
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司