• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tang, Jian (Tang, Jian.) (学者:汤健) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Wu, Zhiwei (Wu, Zhiwei.) | Zhang, Jian (Zhang, Jian.) | Yan, Aijun (Yan, Aijun.) (学者:严爱军)

收录:

CPCI-S EI Scopus

摘要:

Random neural networks (RNNs) prediction model is built with a specific randomized algorithm by employing a single hidden layer structure. Duo to input weights and biases are randomly assigned and output weights are analytically calculated, it is widely used in different applications. Most of RNNs-based soft measuring models assign the random parameter scope to default range [- 1, 1]. However, this cannot ensure the universal approximation capability of the resulting model. In this paper, selective ensemble (SEN)-RNN algorithm based on adaptive selection scope of input weights and biases is proposed to construct soft measuring model. Bootstrap and genetic algorithm optimization toolbox are used to construct a set of SEN-RNN models with different random parameter scope. The final soft measuring model is adaptive selected in terms of the best generation performance among these SEN models. Simulation results based on housing benchmark dataset of UCI and dioxin concentration dataset of municipal solid waste incineration validate the proposed approach.

关键词:

Dioxin concentration Random neural networks (RNNs) Random parameter scope selection Selective ensemble (SEN) learning Soft measuring

作者机构:

  • [ 1 ] [Tang, Jian]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Yan, Aijun]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Tang, Jian]Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang, Liaoning, Peoples R China
  • [ 5 ] [Wu, Zhiwei]Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang, Liaoning, Peoples R China
  • [ 6 ] [Zhang, Jian]Nanjing Univ Informat Sci & Technol NUIST, Sch Comp & Software, Nanjing 210044, Peoples R China

通讯作者信息:

  • 汤健

    [Tang, Jian]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Tang, Jian]Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang, Liaoning, Peoples R China

查看成果更多字段

相关关键词:

来源 :

NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I

ISSN: 0302-9743

年份: 2017

卷: 10634

页码: 576-585

语种: 英文

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:485/3700324
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司