• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

He, Ziping (He, Ziping.) | Yang, Jijiang (Yang, Jijiang.) | Wang, Qing (Wang, Qing.) | Li, Jianqiang (Li, Jianqiang.) (学者:李建强)

收录:

CPCI-S EI Scopus

摘要:

With the development of electronic healthcare, more and more medical institutions begin to use the information system to manage their patient's health records as well as other healthcare data. Electronic medical records (EMR) contain the patient's personal information, medical history, clinical examination, treatment process, and other information, which have large research value. Today, enormous number of electronic medical records accumulated through the hospital information system all over the world. Analyzing these EMRs can effectively assist doctors in clinical decision-making, provide data support for clinical research as well as personalized healthcare service for patients. This paper presents a EMR similarity computation system. The system accepts EMRs collected from hospitals as input, go through a series of process, and eventually calculates the similarity of any two EMRs. An diseases classification experiment was designed to illustrate the effectiveness of the method. This system lays the foundation for further analysis of electronic medical records.

关键词:

Disease classification Similarity computation Electronic health record KNN classifier

作者机构:

  • [ 1 ] [He, Ziping]Tsinghua Univ, Res Inst Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Yang, Jijiang]Tsinghua Univ, Res Inst Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Wang, Qing]Tsinghua Univ, Res Inst Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Li, Jianqiang]Beijing Univ Technol, Sch Software Engn, Beijing, Peoples R China

通讯作者信息:

  • [Yang, Jijiang]Tsinghua Univ, Res Inst Informat Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

SMART HEALTH, ICSH 2016

ISSN: 0302-9743

年份: 2017

卷: 10219

页码: 182-191

语种: 英文

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:3367/4262284
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司