• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Huang, Jiajin (Huang, Jiajin.) | Wang, Jian (Wang, Jian.) | Zhong, Ning (Zhong, Ning.)

收录:

CPCI-S EI Scopus

摘要:

Top-N recommendation tasks aim to solve the information overload problem for users in the information age. As a user's decision may be affected by correlations among items, we incorporate such correlations with the user and item latent factors to propose a Poisson-regression-based method for top-N recommendation tasks. By placing priori knowledge and using a sparse structure assumption, this method learns the latent factors and the structure of the item-item correlation matrix through the alternating direction method of multipliers (ADMM). The preliminary experimental results on two real-world datasets show the improved performance of our approach.

关键词:

item-item correlations Recommender systems poisson regression

作者机构:

  • [ 1 ] [Huang, Jiajin]Beijing Univ Technol Beijing, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Jian]Beijing Univ Technol Beijing, Beijing 100124, Peoples R China
  • [ 3 ] [Zhong, Ning]Maebashi Inst Technol, Maebashi, Gunma 3710816, Japan

通讯作者信息:

  • [Huang, Jiajin]Beijing Univ Technol Beijing, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL

年份: 2017

页码: 885-888

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:106/3910231
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司