收录:
摘要:
Top-N recommendation tasks aim to solve the information overload problem for users in the information age. As a user's decision may be affected by correlations among items, we incorporate such correlations with the user and item latent factors to propose a Poisson-regression-based method for top-N recommendation tasks. By placing priori knowledge and using a sparse structure assumption, this method learns the latent factors and the structure of the item-item correlation matrix through the alternating direction method of multipliers (ADMM). The preliminary experimental results on two real-world datasets show the improved performance of our approach.
关键词:
通讯作者信息: