• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Xiuzhi (Li, Xiuzhi.) | Li, Shangyu (Li, Shangyu.) | Jia, Songmin (Jia, Songmin.) (学者:贾松敏) | Xu, Chuanluo (Xu, Chuanluo.)

收录:

CPCI-S

摘要:

Restricted by environmental noise and the sensor itself performances, environmental information collected by various sensors of mobile robot has certain uncertainty. Laser Range Finder (LRF) has high precise measurement and large measuring range, but it can only acquire the environment information at a certain level, especially, it is unable to detect obstacles below the level of LRF measuring, so the environmental map that derived by it is incomplete. Microsoft Kinect sensor is a new kind of range camera, it has advantages of low price, strong capability of data collection, synchronous acquisition of RGB image and depth image. However, it encounters problems of low precision and limited measurement range. To fill the depth holes in depth image, we proposed a Combined Median Filter (CMF) algorithm. Then an approach which fused Kinect with LRF is proposed for obtaining a more accurate and more complete environmental map. The Robotic Operating System (ROS) which provided a messaging transformational mechanism for software modules integration was chosen as the robot software development platform.

关键词:

depth image processing Kinect Map building Multi-sensor Fusion ROS

作者机构:

  • [ 1 ] [Li, Xiuzhi]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing, Peoples R China
  • [ 2 ] [Li, Shangyu]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing, Peoples R China
  • [ 3 ] [Jia, Songmin]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing, Peoples R China
  • [ 4 ] [Xu, Chuanluo]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing, Peoples R China

通讯作者信息:

  • [Li, Shangyu]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA)

年份: 2016

页码: 819-824

语种: 英文

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:271/3269400
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司