收录:
摘要:
Crowd counting is a key problem for many computer vision tasks while most existing methods try to count people based on regression with hand-crafted features. Recently, the fast development of deep learning has resulted in many promising detectors of generic object classes. In this paper, to effective leverage the discriminability of convolutional neural networks, we propose a method to people counting based on Faster R-CNN[9] head-shoulder detection and correlation tracking. Firstly, we train a Faster R-CNN head-shoulder detector with Zeiler model to detect people with multiple poses and views. Next, we employ kernelized correlation filter(KCF)[7] to track the people and obtain the trajectory. Considering the results of the detection and tracking, we fuse the two bounding box to obtain a continuous and stable trajectory. Extensive experiments and comparison show the promise of the proposed approach.
关键词:
通讯作者信息:
电子邮件地址: