• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Sun, Dan (Sun, Dan.) | Zhang, Tianyang (Zhang, Tianyang.) | Chen, Lisha (Chen, Lisha.)

收录:

CPCI-S

摘要:

Image super-resolution reconstruction is to use a single or a set of degraded images to produce a high resolution image, to overcome the limitation or ill-posed conditions of the image acquisition process to achieve better content visualization and scene recognition. This paper proposes a super resolution reconstruction algorithm based on the combination of compressed sensing and depth perception neural networks. The algorithm originally makes use of a double pyramid of images, built starting from the input image itself, to extract the dictionary patches, and employs a regression based method to directly map the low-resolution (LR) input patches into their related high-resolution (HR) output patches. With the integration of deep neural network architecture and the compressive sensing theory, the robustness will be enhanced. Experiments on natural images show that the proposed algorithm outperforms some of the state-of-the-art algorithm in terms of peak signal to noise ratio, mean square error and structural similarity index.

关键词:

compressed sensing Image super resolution machine learning spatial processing

作者机构:

  • [ 1 ] [Sun, Dan]Beijing Univ Technol, Beijing, Peoples R China
  • [ 2 ] [Zhang, Tianyang]Hebei Univ, Baoding, Peoples R China
  • [ 3 ] [Chen, Lisha]Huazhong Univ Sci & Technol, Wuhan, Peoples R China

通讯作者信息:

  • [Sun, Dan]Beijing Univ Technol, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON COMMUNICATION AND ELECTRONICS SYSTEMS (ICCES)

年份: 2016

页码: 1060-1064

语种: 英文

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

归属院系:

在线人数/总访问数:172/3609263
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司